Feature-Specific Penalized Latent Class Analysis for Genomic Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature-specific penalized latent class analysis for genomic data.

Genomic data are often characterized by a moderate to large number of categorical variables observed for relatively few subjects. Some of the variables may be missing or noninformative. An example of such data is loss of heterozygosity (LOH), a dichotomous variable, observed on a moderate number of genetic markers. We first consider a latent class model where, conditional on unobserved membersh...

متن کامل

A penalized latent class model for ordinal data.

Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent clas...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

Latent class models for financial data analysis: some statistical developments

I exploit the potential of latent class models for proposing an innovative framework for financial data analysis. By stressing the latent nature of the most important financial variables, expected return and risk, I am able to introduce a new methodological dimension in the analysis of financial phenomena. In my proposal, (i) I provide innovative measures of expected return and risk, (ii) I sug...

متن کامل

Latent feature regression for multivariate count data

We consider the problem of regression on multivariate count data and present a Gibbs sampler for a latent feature regression model suitable for both underand overdispersed response variables. The model learns countvalued latent features conditional on arbitrary covariates, modeling them as negative binomial variables, and maps them into the dependent count-valued observations using a Dirichlet-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2006

ISSN: 0006-341X

DOI: 10.1111/j.1541-0420.2006.00566.x